31,968 research outputs found

    Gravitational waveforms with controlled accuracy

    Get PDF
    A partially first-order form of the characteristic formulation is introduced to control the accuracy in the computation of gravitational waveforms produced by highly distorted single black hole spacetimes. Our approach is to reduce the system of equations to first-order differential form on the angular derivatives, while retaining the proven radial and time integration schemes of the standard characteristic formulation. This results in significantly improved accuracy over the standard mixed-order approach in the extremely nonlinear post-merger regime of binary black hole collisions.Comment: Revised version, published in Phys. Rev. D, RevTeX, 16 pages, 4 figure

    Cauchy-characteristic Evolution of Einstein-Klein-Gordon Systems: The Black Hole Regime

    Full text link
    The Cauchy+characteristic matching (CCM) problem for the scalar wave equation is investigated in the background geometry of a Schwarzschild black hole. Previously reported work developed the CCM framework for the coupled Einstein-Klein-Gordon system of equations, assuming a regular center of symmetry. Here, the time evolution after the formation of a black hole is pursued, using a CCM formulation of the governing equations perturbed around the Schwarzschild background. An extension of the matching scheme allows for arbitrary matching boundary motion across the coordinate grid. As a proof of concept, the late time behavior of the dynamics of the scalar field is explored. The power-law tails in both the time-like and null infinity limits are verified.Comment: To appear in Phys. Rev. D, 9 pages, revtex, 5 figures available at http://www.astro.psu.edu/users/nr/preprints.htm

    Time evolution of MX-80 bentonite geochemistry under thermo-hydraulic gradients

    Get PDF
    Indexación: Web of ScienceTwo 20-cm long columns of MX-80 bentonite compacted at a nominal dry density of 1.7 g/cm(3) with a water content of 17% were tested in thermo-hydraulic (TH) cells with the aim of simulating the conditions of a sealing material in a nuclear waste repository. On top of the columns a hydration surface simulated the host rock supplying groundwater and at the bottom a heater simulated the waste canister. The tests comprised two phases: a heating phase and a 'heating + hydration' phase. The temperatures at the ends of the columns were set during the last phase to 30 degrees C at the top and 140 degrees C at the bottom, respectively. The thermo-hydraulic treatment resulted in major changes along the bentonite columns. These changes led to significant gradients along the column with respect to the physical state (water content, dry density) and geochemistry of the bentonite. Smectite dissolution processes occurred. As a result, colloids were probably produced, particularly in the more hydrated areas. In the warmest part of the columns precipitation of carbonates took place, caused by their solubility decrease with temperature and the evaporation. The increase in water content reduced the ionic strength of the pore water in the more hydrated areas where species such as gypsum were dissolved. The solubilized ions were transported towards the bottom of the columns; Na+, Ca+, Mg2+ and SO42- moved at a similar rate and K+ and Cl- moved farther. These solubilized ions precipitated in the form of salts farther away along the columns as the test was longer. The TH treatment implied the loss of exchangeable positions in the smectite, particularly towards the heater. The cation exchange complex was also modified.http://www.ingentaconnect.com/content/minsoc/cm/2016/00000051/00000002/art0000

    Gravitational Waves from a Fissioning White Hole

    Get PDF
    We present a fully nonlinear calculation of the waveform of the gravitational radiation emitted in the fission of a vacuum white hole. At early times, the waveforms agree with close-approximation perturbative calculations but they reveal dramatic time and angular dependence in the nonlinear regime. The results pave the way for a subsequent computation of the radiation emitted after a binary black hole merger.Comment: 11 pages, 6 figures, RevTeX

    Matching characteristic codes: exploiting two directions

    Get PDF
    Combining incoming and outgoing characteristic formulations can provide numerical relativists with a natural implementation of Einstein's equations that better exploits the causal properties of the spacetime and gives access to both null infinity and the interior region simultaneously (assuming the foliation is free of caustics and crossovers). We discuss how this combination can be performed and illustrate its behavior in the Einstein-Klein-Gordon field in 1D.Comment: 10 pages, 9 postscript figures. To appear in Int. Journ. of Mod. Phys.

    SGSDesigner, the ODESGS Environment User Interface

    Full text link
    In this demo, we will show SGSDesigner, the ODESGS Environment user interface. ODESGS Environment (the realization of the ODESGS Framework [1]) is an environment for supporting both a) the annotation of pre-existing Grid Services(GSs) and b) the design of new complex Semantic Grid Services(SGSs) in a (semi) automatic way. In the demo we will focus in the annotation of a WSRF GS, using the annotation process proposed by the ODESGS Framework

    Asymptotic analysis of displaced lunar orbits

    Get PDF
    The design of spacecraft trajectories is a crucial task in space mission design. Solar sail technology appears as a promising form of advanced spacecraft propulsion which can enable exciting new space science mission concepts such as solar system exploration and deep space observation. Although solar sailing has been considered as a practical means of spacecraft propulsion only relatively recently, the fundamental ideas are by no means new (see McInnes1 for a detailed description). A solar sail is propelled by reflecting solar photons and therefore can transform the momentum of the photons into a propulsive force. Solar sails can also be utilised for highly non-Keplerian orbits, such as orbits displaced high above the ecliptic plane (see Waters and McInnes2). Solar sails are especially suited for such non-Keplerian orbits, since they can apply a propulsive force continuously. In such trajectories, a sail can be used as a communication satellite for high latitudes. For example, the orbital plane of the sail can be displaced above the orbital plane of the Earth, so that the sail can stay fixed above the Earth at some distance, if the orbital periods are equal (see Forward3). Orbits around the collinear points of the Earth-Moon system are also of great interest because their unique positions are advantageous for several important applications in space mission design (see e.g. Szebehely4, Roy,5 Vonbun,6 Thurman et al.,7 Gomez et al.8, 9). Several authors have tried to determine more accurate approximations (quasi-Halo orbits) of such equilibrium orbits10. These orbits were first studied by Farquhar11, Farquhar and Kamel10, Breakwell and Brown12, Richardson13, Howell14, 15.If an orbit maintains visibility from Earth, a spacecraft on it (near the L2 point) can be used to provide communications between the equatorial regions of the Earth and the lunar poles. The establishment of a bridge for radio communications is crucial for forthcoming space missions, which plan to use the lunar poles.McInnes16 investigated a new family of displaced solar sail orbits near the Earth-Moon libration points.Displaced orbits have more recently been developed by Ozimek et al.17 using collocation methods. In Baoyin and McInnes18, 19, 20 and McInnes16, 21, the authors describe new orbits which are associated with artificial Lagrange points in the Earth-Sun system. These artificial equilibria have potential applications for future space physics and Earth observation missions. In McInnes and Simmons22, the authors investigate large new families of solar sail orbits, such as Sun-centered halo-type trajectories, with the sail executing a circular orbit of a chosen period above the ecliptic plane. We have recently investigated displaced periodic orbits at linear order in the Earth-Moon restricted three-body system, where the third massless body is a solar sail (see Simo and McInnes23). These highly non-Keplerian orbits are achieved using an extremely small sail acceleration. It was found that for a given displacement distance above/below the Earth-Moon plane it is easier by a factor of order 3.19 to do so at L4=L5 compared to L1=L2 - ie. for a fixed sail acceleration the displacement distance at L4=L5 is greater than that at L1=L2. In addition, displaced L4=L5 orbits are passively stable, making them more forgiving to sail pointing errors than highly unstable orbits at L1=L2.The drawback of the new family of orbits is the increased telecommunications path-length, particularly the Moon-L4 distance compared to the Moon-L2 distance

    Orthosymplectic Jordan superalgebras and the Wedderburn principal theorem (WPT)

    Get PDF
    An analogue of the Wedderbur principal theorem (WPT) is considered for finite dimensional Jordan superalgebras A with solvable radical N, such that N^2=0 and A/N is isomorphic to Josp_n|2m(F), where F is an algebraicallly closed field of characteristic zero. Let's we prove that the WPT is valid under some restrictions over the irreducible Josp_n|2m(F)-bimodules contained in N, and it is shown with counter-examples that these restrictions can not be weakened.Comment: 13 page
    corecore